Magnetic PHB nanoparticles containing metallic phthalocyanines: effect of the heavy atom on the properties of the nanoparticulate formulation

Name: Barbara Silva FigueiredoType: MSc dissertationPublication date: 11/03/2021Advisor:

Name Rolesort descending
André Romero da Silva Advisor *

Examining board:

Name Rolesort descending
André Romero da Silva Advisor *
Arlan da Silva Gonçalves External Examiner *
Marco Cesar Cunegundes Guimarães Internal Examiner *

Summary: Photodynamic therapy is a promising technique for the treatment of cancer, which involves the combination of three factors: a photosensitizer, light source and oxygen molecules, which together can destroy neoplastic cells. Phthalocyanine photosensitizers have advantages, but due to their hydrophobicity, it is necessary to encapsulate in nanocarriers, of which the polymeric nanoparticles stand out. This work aims to evaluate the effect of the heavy atom of Al and In phthalocyanine photosensitizers on the physicochemical and photochemical properties of magnetic polyhydroxybutyrate (PHB) nanoparticles. For this purpose, a factorial design 24 was used to investigate the influence of the parameters used during the preparation, on the final properties of the nanoparticles. The ability of nanoparticles to cause the photoxidation of albumin and tryptophan was also evaluated. According to the results of the factorial design, the increase in the agitation speed during the preparation, contributed to the reduction of the size and the efficiency of recovery of the nanoparticles. The increase in the concentration of the colloidal stabilizer (PVA), increased the size of the nanoparticles, and the InPc nanoparticles had smaller sizes and encapsulation efficiency when compared to the AlPc nanoparticles. Through optimization via evolutionary operation, it was possible to obtain nanoparticles with sizes less than 200 nm. It was also identified that encapsulated AlPc was more efficient than encapsulated InPc in causing the photoxidation of albumin and tryptophan molecules. Free InPc was more efficient than free AlPc in causing the photoxidation of albumin and tryptophan. Theoretical calculations using semi-empirical method and molecular docking corroborated the experimental results.

Keywords: nanoparticle, polyhydroxybutyrate, aluminum phthalocyanine, indium phthalocyanine, factorial design, photoxidation, photodynamic therapy.Access to document

Acesso à informação
Transparência Pública

© 2013 Universidade Federal do Espírito Santo. Todos os direitos reservados.
Av. Marechal Campos, 1468 - Bonfim, Vitória - ES | CEP 29047-105